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Deliverable abstract 

 
A detailed description of the weather models and processes applied to develop the weather forecast 

products for the VISCA project in the context of task 2.2 in work package 2 is presented in this 

document.  

In the VISCA project, two kinds of products are delivered: short-term weather forecasts and mid-term 

weather forecast. While having in two days in advance the weather forecast product is useful for near 

future in-field activities, having weather forecast information ten days in advance could be useful to 

wine producers to minimize risks related to coming extreme events. For instance, if a heat wave is 

forecasted in 6 days, wine producers could act in advance irrigating the field more than usual before 

the event.  

Meteosim (MET) has developed and supplied weather forecasts services, which consisted in deliver the 

best prediction of high impact weather variables at forecast time scales from hours up to 10 days (240 

hours). For the short-term forecast (up to 48 hours), a regional weather forecast model is used. On the 

other hand, a probabilistic model is used for mid-term forecast (up to 10 days). 

Finally, all weather forecast products are sent to the VDI (VISCA Data Interface), where other modellers 

and end-users can download these information for their use in the VISCA platform. 

 

Copyright and legal notice: 
The views expressed in this document are the sole responsibility of the authors and do not 
necessarily reflect the views or position of the European Commission. Neither the authors nor 
the VISCA Consortium are responsible for the use which might be made of the information  
contained in here. 
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1. Introduction 

Knowing weather conditions in advance it is extremely important for the society, the economy 

on which it depends, and the environment to avoid certain risks in advance. Moreover, extreme 

weather conditions can cause substantial disruptions in daily life and incur monetary costs and 

even cause deaths. Therefore, having the best prediction of high impact weather variables at 

different time scales could be useful to wine producers to minimize risks related to coming 

extreme weather events.  

 

1.1 Roles and Responsibilities 

The main goal of this report is to provide a detailed description of the weather models and 

processes applied to develop the weather forecast products for the VISCA project in the context 

of task 2.2 in work package 2. In this task, Meteosim (MET) developed and supplied weather 

forecasts services, which consisted in deliver the best prediction of high impact weather 

variables at forecast time scales from hours up to 10 days (240 hours). This information could 

be useful to wine producers to minimize risks related to coming extreme events (for instance, if 

a heat wave is forecasted in three days, wine producers could act in advance irrigating the field 

two days before the event).  

 

1.2 Structure of the document 

This report is organised in the following manner: 

• Chapter 1 includes this introduction and a description of the document; 

• Chapter 2 introduces the schematic data flow from input to output of the implemented 

weather forecast models. 

• Chapter 3 provides information about the applied numerical weather prediction 

models. 

• Chapter 4 describes a description of the output data  
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2. System architecture 

This chapter describes the schematic data flow of the weather forecast production from input 

to output within the context of task 2.2. It includes the weather forecasts up to 2 days which is 

developed by Meteosim (MET) and up to 10 days, also post-processed by MET. 

 

Figure 1. MET data processing flow chart regarding VISCA data. 

Figure 1 shows the data processing flow chart, which consists of two main blocks; data input and 

data processing. As an input for weather forecast production, the weather observations are 

taken from surface synoptic observations (SYNOP), and initial weather model data from two 

numerical weather prediction models. For the short-term forecast (up to 48 hours), a regional 

weather forecast model is used. On the other hand, a probabilistic model is used for mid-term 

forecast (up to 10 days). 

For the short-term product, the SYNOP data is provided in the ASCII text format, and the weather 

model data in the GRIB (Gridded Binary) format. The first phase in the data processing block is 

weather forecast validation. For validation purposes, different weather forecast experiments 

are done to select the better physical parameters of the model to improve weather forecast. 

When the different forecasts are validated, the final physics options are set to provide more 

reliable and accurate weather forecasts. Then, each day the model is run twice per day 

producing NetCDF (Network Common Data Form) format data and converted to GeoJSON 

format. 

The mid-term is produced by a probabilistic global forecast model where the data obtained in 

GRIB format and post-processed. Then, the data is formatted into a CSV format per each demo-

site and in GeoJSON format per each demo-area. 

Finally, all weather forecast products are sent to the VDI (VISCA Data Interface). 
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3. Numerical weather prediction models 

Weather forecasting is mainly based on the use of Numerical Weather Prediction (NWP) models. 

NWP focuses on taking observations of current weather and processing these data with 

computer models to forecast the future state of the weather. Current weather observations 

serve as input to the numerical computer model through a process known as data assimilation 

to produce outputs of different weather variables. These observations are gathered from 

specific sites at ground level and from soundings where radiosonde measures the vertical 

structure of the atmosphere. Satellite Earth observation data is also essential part of data input 

for models. 

Weather models consists of mathematical equations that are based on the laws of physics, fluid 

motion and chemistry. The models use a coordinate system which divides the forecast domain 

into a three-dimensional (3D) grid (Figure 2), where every grid cell represents the average value 

within the cell. The horizontal domain of a domain of a model is either global or regional. 

Regional models can use a global model to obtain lateral boundary conditions to allow systems 

from outside the regional model domain to move into its area. Compared to global models, 

regional models (limited are models) can produce finer spatial resolution output because 

computational resources are focus on a specific area instead of covering whole globe. In the 

VISCA project, we utilize the limited area model WRF-ARW (Weather Research & Forecast - 

Advanced Research WRF) for short-term forecasts that range from a few hours to a couple of 

days, and the global model GEFS (Global Ensemble Forecast System) for longer-term forecasts 

that range from a few days to ten days. 

 
Figure 2. An illustration of the 3D numerical weather prediction model principle. 
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Weather forecasts are either deterministic or probabilistic. As we go from the short-term to the 

long-term, the nature of the forecasts also changes. Short-term forecasts are deterministic, in 

what we state what is going to happen, when and where. In general, as we go to longer times 

scales the proportion of the forecast which must be probabilistic increases.4 

 

3.1 Deterministic forecasting 

During the last years, the use of deterministic NWP models (HRES) has increased significantly 

due to: higher accuracy of the models, easier access to community models, computational 

advances, etc. Despite the inherently uncertain that they can have due to the initial conditions 

of the atmosphere, several calibrations can be done to minimize the discrepancies against the 

real weather conditions. Due to NWP models have a wide range of options to set up: physical 

options, dynamical options, horizontal model resolution, number of vertical layers and density, 

etc., it is crucial configurate the model with the properly parametrizations and model options.  

3.1.1 WRF-ARW 

The meteorological model applied for the short-term weather operational system is the 

Weather Research and Forecasting model. WRF-ARW is a new generation, non-hydrostatic and 

modular structure meteorological model designed to execute multi-task operational weather 

forecasting. The WRF-ARW modeling system, a complex mesoscale model, is capable of 

providing reliable and precise hourly weather parameters. The WRF-ARW system has been 

developed for diagnostic and forecasting purposes, which makes it the most optimal modeling 

system for all the activities to be performed for this project. 

 
Figure 3. Modular Scheme of WRF-ARW modeling system. 

                                                           
4 https://www.unc.edu/courses/2008ss2/geog/111/001/ForecastTypes/ForecastTypes.htm 

https://www.unc.edu/courses/2008ss2/geog/111/001/ForecastTypes/ForecastTypes.htm


 

 

Vineyards´ Integrated Smart Climate Application  

VISCA (H2020/ Research and Innovation action) Grant Agreement no. 730253 
 

VISCA D2.1 (WP2)  05, 2018 (M13) Page 10 of 30 
 

WRF-ARW model have a wide range of options to set up: physical options, dynamical options, 

horizontal model resolution, number of vertical layers and density, domains architecture and 

nest down options, assimilation data, time-step, spin-up time, etc. It is a fundamental factor 

when configuring a model, the selection of the parameterizations and options that are used. 

And the best combination for one region is not necessarily applicable to another. 

The preferred initial and boundary conditions for the operational configuration over the coarsest 

regional domain is supplied by the National Centers for Environmental Prediction (NCEP) Global 

Forecast System (GFS) with horizontal resolution 0.25°. 

For this project, the definition of an optimal configuration testing methodology of a specific 

WRF-ARW is considered to improve meteorological forecasting for operational purposes. The 

proposed methodology is based on previously configured forecasting systems and performance 

achievements reached by the modelers for this project (Arasa et al., 2016)5.  

3.1.2 Model configuration 

The meteorological model is configured and executed daily across nested grid domains for each 

demo-area as was defined in the proposal.  

GFS global model domain (red squares from Figure 4 to Figure 6) feeds the regional model WRF-

ARW. Within the proposes of this project, 3 different model simulations are being done daily to 

provide the most reliable and accurate weather forecast. In this way, WRF-ARW model is built 

over a mother domain with 12 km spatial resolution (green squares). The first nested domain, 

with a spatial resolution of 3 km (yellow squares) includes all the three countries involved in 

each demo area; Italy, Portugal and Spain. In addition, to reproduce the local scale, nested 

domains with 1km of horizontal resolution (lilac squares) are developed in the meteorological 

forecasting system for each demo-area; Mastroberardino, Symington and Codorniu demo-areas.  

 
Figure 4. WRF-ARW domains structure for Mastroberardino demo-area. 

                                                           
5 Arasa, R., Porras, I., Domingo-Dalmau, A., Picanyol, M., Codina, B., González, M.A., Piñón, J., 2016. Defining a 
standard methodology to obtain optimum WRF configuration for operational forecast: application over the Port of 
Huelva (Southern Spain). Atmospheric and Climate Sciences, DOI: 10.4236/acs.2016.62028. 
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Figure 5. WRF-ARW domains structure for Symington demo-area. 

 
Figure 6. WRF-ARW domains structure for Codorniu demo-area. 

 

More information about the features of the domains in Table 1. 

Table 1. Domain’s modelling features. 

Domain 
Horizontal 
resolution 

Region analysis 
Vertical 
levels 

Points 
domain 

Size domain 
(km) 

Green 12 km 
South –  
West Europe 

30 220 x 220   2640 x 2640 

Yellow 3 km 
Italy, Portugal, 
Spain 

30 461 x 393 1383 x 1179 

Lilac 1 km Demo areas 30 103 x 103 103 x 103 

 

The temporal resolution of the forecasts is 1 hour for lead times up to 48 hours. The weather 

parameters that are used from the WRF-ARW data output stream are shown in Table 2. 

Table 2: Parameter details of the WRF-ARW forecasts. 

Short 
name 

Long name Unit 
Temporal resolution 
(hours) 

Lead  
times (hours) 

t2m 2 metre temperature K 1 0…48 

rh2 2 metre relative humidity % 1 0…48 

wspd 10 metre wind speed m/s 1 0…48 

swrad 
Downward short-wave flux at 
ground surface 

W/m2 1 0…48 
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3.1.3 Calibration and verification of the deterministic forecast 

To calibrate the model, we will consider a past period and we will analyze different options. 

Modelling results will be validated using a representative past period. At this point of the report, 

the calibration and validation of the different experiments shown in Table 3 are being carried 

out. Therefore, the results of these are not shown in this report. 

Simulations will be conducted in different periods of the year 2017 (selected because is the most 

recent year). Numerical simulations will be executed for 30 hours corresponding on every day 

(hereinafter referred to as daily simulations) included in the period compressed between 

01/01/2017 and 12/31/2017, taking the first 12 hours as spin-up time to minimize the effects of 

initial conditions. To calibrate the model, we have considered the months of January, April, July 

and October for the year 2017. These months represents the climate variability of the region, 

being the coldest, driest, warmest, wettest month respectively. A total of 5040 WRF daily 

simulations will be conducted, corresponding to 120 days, 11 different experiments and 3 

different regions. 

3.1.3.1  Numerical experiments definition 

We have defined up to 11 numerical experiments based on the use of different CMS (cumulus 

parametrization), SWR (short-wave parametrization) and MPH (microphysics parametrization) 

schemes. We have focus our experiments on MPH and CMS. The reason to focus on these 

experiments and not on others is related with the important effect of these schemes over the 

precipitation and temperatures fields (which they are the most important meteorological 

variables for agricultural issues).  

In this line we have designed: four experiments to analyze optimum microphysics scheme; four 

experiments to analyze cumulus; one experiment to analyze a different shortwave radiation 

scheme. Furthermore, we have defined 1 experiment modifying land use and topography 

databases. 

The process followed for the development of the experiments consists in: 

- to analyze physical options: modifying the MPH scheme carrying out up to 4 experiments 

(MPH1-4), comparing against the observed data and selecting the MPH scheme that 

minimizes the uncertainty; later modifying the SWR scheme and keeping the selected MPH 

and the rest of schemes defined initially, and comparing again against the observed data 

and selecting the MPH scheme that minimizes the uncertainty; and finally doing the same 

for the different CMS experiments (CMS1-4). 

- once selected best physical options, experiment with different physiographical database 

information will be realized. 
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All experiments will be executed using Noah LSM as land surface model (Chen and Dudhia, 

2001)6. 

In all WRF-ARW sensitivity experiments we will use a ceteris paribus experimental approach 

(Campra and Millstein, 2013)7. This approach is based into modify only one configuration option 

and holding all else constant. This approach has always been followed except when exist some 

WRF-ARW restrictions. In Table 3 the different experiments designed are showed. 

 

                                                           
6 Chen, F., Dudhia, J., 2001. Coupling an advanced land surface hydrology model with the Penn State-NCAR MM5 
modeling system. Part I: Model implementation and sensitivity. Monthly Weather Review, 129, 569-585. 
7 Campra, P. and Millstein, D., 2013. Mesoscale climatic simulation of surface air temperature cooling by highly 
reflective greenhouses in SE Spain. Environmental Science and Technology, 47, 12284-12290. 
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Table 3: Numerical experiments designed corresponding to physics options and physiographical model database. 
Exp. PBL SUR CMS SWR LWR MPH VER PHI 

INI 
YSU (Hong et 

al., 2006) 

MM5 

similarity 
Kain-Fritsch (Kain, 2004) 

Dudhia 

(Dudhia, 

1989) 

RRTMG 

(Iacono et 

al., 2008) 

WMS3 (Hong et 

al., 2004) 
30 GTOPO30 and GLCC 

MPH1 YSU 
MM5 

similarity 
Kain-Fritsch Dudhia RRTMG 

WDM6 (Hong et 

al., 2010) 
30 GTOPO30 and GLCC 

MPH2 YSU 
MM5 

similarity 
Kain-Fritsch Dudhia RRTMG 

SBU-Lin (Lin et al., 

2011) 
30 GTOPO30 and GLCC 

MPH3 YSU 
MM5 

similarity 
Kain-Fritsch Dudhia RRTMG 

NSSL 2-mom w/o 

hail (Mansell et 

al., 2010) 

30 GTOPO30 and GLCC 

MPH4 YSU 
MM5 

similarity 
Kain-Fritsch Dudhia RRTMG 

HUJI BSM ‘fast’ 

(Khain et al., 

2010) 

30 GTOPO30 and GLCC 

SWR1 YSU 
MM5 

similarity 
Kain-Fritsch 

RRTMG 

(Iacono et 

al., 2008) 

RRTMG Best MPH 30 GTOPO30 and GLCC 

CMS1 YSU 
MM5 

similarity 
Grell-Freitas (Grell et al., 2014) 

Best SWR 

scheme 
RRTMG Best MPH 30 GTOPO30 and GLCC 

CMS2 YSU 
MM5 

similarity 
KF-CuP (Berg et al., 2013) 

Best SWR 

scheme 
RRTMG Best MPH 30 GTOPO30 and GLCC 

CMS3 YSU 
MM5 

similarity 
Multi-scale KF (Zheng et al., 2016) 

Best SWR 

scheme 
RRTMG Best MPH 30 GTOPO30 and GLCC 

CMS4 YSU 
MM5 

similarity 
New Tiedtke (Zhang and Wang, 2011) 

Best SWR 

scheme 
RRTMG Best MPH 30 GTOPO30 and GLCC 

HRP1 Best Physical Options 30 
ASTER (Abrams et al., 2003) and 

CLC2006 
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3.1.3.2 Methodology to evaluate 

To calibrate and validate the WRF-ARW model data for the different periods, we are using 

observational data from the European Climate Assessment & Dataset (ECA&D) and the 

Meteorological agency from Spain (AEMet). Modelled WRF-ARW values from the domain of 3 

km horizontal resolution and observed values from local meteorological stations are being 

compared using different statistics. Values from all the local meteorological stations have been 

considered as observed values.  

To evaluate the model performance of the meteorological variables temperature, relative 

humidity, wind velocity and wind direction we have use a deterministic numerical evaluation 

considering four statistics the large amount of methodologies that can be applied8 9: the Mean 

Bias (MB), the Mean Absolute Gross Error (MAGE), the Root-Mean-Square Error (RMSE) and the 

Index of Agreement (IOA). These statistics provide information on how uncertain a model is, 

regarding to the observations10 and according to them, a benchmark is given11 12. In the next 

lines are showed the different mathematical expressions of every statistical. 

𝑀𝐵 =
1

𝑁
∑(𝑀𝑖 − 𝑂𝑖)

𝑁

𝑖=1

 𝑀𝐴𝐺𝐸 =
1

𝑁
∑|𝑀𝑖 − 𝑂𝑖|

𝑁

𝑖=1

 

𝑅𝑀𝑆𝐸 = √
1

𝑁
∑(𝑀𝑖 − 𝑂𝑖)2

𝑁

𝑖=1

 
𝐼𝑂𝐴 =

∑ (𝑀𝑖 − 𝑂𝑖)2𝑁
𝑖=1

∑ [|𝑀𝑖 − 𝑂́| − |𝑂𝑖 − 𝑂́|]
2𝑁

𝑖=1

 

 

where 𝑂𝑖 and 𝑀𝑖 corresponds to the observed and modelled values respectively, is the 𝑂́ 

observed mean value and 𝑁 corresponds to the product of the number of hours and stations 

used in the evaluation. 

MB is an evaluation of the data tendency; positive values mean that the simulated values are 

overestimating the observed ones. Similarly, negative values indicated an underestimation of 

the simulated values over the real ones. MAGE is used to measure the closeness of the modeled 

and observed values. IOA provides a measure of the match between the departure of each 

prediction from the observed mean and the departure of each observation from the observed 

                                                           
8 Carvalho, A.C., Carvalho, A., Gelpi, I., Barreiro, M., Borrego, C., Miranda, A.I. and Pérez-Muñuzuri, V., 2006. Influence 
of topography and land-use on pollutants dispersion in the Atlantic coast of Iberian Peninsula. Atmospheric 
Environment, 40, 3969–3982. 
9 Pielke, R.A., 1984. Mesoscale meteorological modelling. Academic Press, London. 
10 Denby, B., Larssen, S., Guerreiro, C., Douros, J., Moussiopoulos, N., Fragkou, L., Gauss, M., Olesen, H. and Miranda, 
A.I., 2008. Guidance on the use of models for the European Air Quality Directive. ETC/ACC Report. 
11 Emery, C., Tai, E., 2001. Enhanced Meteorological Modeling and Performance Evaluation for Two Texas Ozone 
Episodes. Final report submitted to Texas Natural Resources Conservation Commission, prepared by ENVIRON, 
International Corp, Novato, CA 
12 Tesche, T.W., McNally, D.E. and Tremback, C., 2002. Operational Evaluation of the MM5 Meteorological Model 
Over the Continental United States: Protocol for Annual and Episodic Evaluation. Prepared for US EPA by Alpine 
Geophysics, LLC, Ft. Wright, KY, and ATMET, Inc., Boulder, CO. 
http://www.epa.gov/scram001/reports/tesche_2002_evaluation_protocol.pdf 

http://www.epa.gov/scram001/reports/tesche_2002_evaluation_protocol.pdf
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mean. This is a statistic to evaluate with a single value the goodness of fit of a modeling system 

with respect to the observations13. IOA has theoretical range of 0 to 1, with a value of 1 

suggesting perfect agreement. RMSE is calculated as the square root of the mean squared 

difference in modeled and observed values. It is commonly used as a measure of the overall 

model performance.  

Regarding wind direction, statistics have to be considered very carefully due to circular nature 

of wind direction. For this reason, in the case of the wind direction a modification of the 

traditional formula of MB and MAGE has been applied14 15 16. 

The evaluation performed is focused on the inner domains, d03 and d04, since the final aim of 

this study is to find the best model setup for high resolution domains. Statistical evaluation of 

the meteorological data is achieved by comparing the modeled parameters to the 

meteorological station observations of mean sea level pressure, temperature at 2 m, wind speed 

at 10 m, wind direction at 10 m and relative humidity at 2 m. The statistics used for each 

meteorological parameter and its benchmarks are shown in next table. Wind speed and wind 

direction are calculated considering calms below 1 ms-1, as wind direction is not reliable for 

lower speeds5,16. The statistics have been calculated from hourly data of the model and 

observations. 

Table 4. Statistics used for model evaluation and benchmark values in case of temperature, 
relative humidity, wind velocity and wind direction. 

Meteorological parameter (reference height) Statistic Benchmark 

Temperature (2 m) 

MB < ±0.50 K 

MAGE < 2.00 K 

IOA ≥ 0.80 

Wind speed (10 m) 
MB ±0.50 ms-1 

RMSE < 2.00 ms-1 

Wind direction (10 m) 
MB < ±10.00° 

MAGE < 30.00° * 

Relative humidity (2 m) 

MB < 10.00% 

MAGE < 20.00% 

IOA ≥ 0.60 

*The benchmark value of 30º is a valid reference value for meteorologically simple areas (locations with 
low topography complexity and/or land use variance and which meteorology depends basically on the 
synoptic scale). Typically for the meteorologically complex areas this reference value is significantly 
higher. 

                                                           
13 Pérez, V.A., Arasa, R., Codina, B. and Piñón, J., 2015. Enhancing air quality forecasts over Catalonia (Spain) using 
Model Output Statistics. Journal of Geoscience and Environment Protection, 3, 9-22. 
14 Jiménez-Guerrero, P., Jorba, O., Baldasano, J.M. and Gassó, S., 2008. The use of a modelling system as a tool for air 
quality management: Annual high-resolution simulations and evaluation. Science of the Total Environment, 390, 323-
340. 
15 Soler, M.R., Arasa, R., Merino, M., Olid, M. and Ortega, S., 2011. Modelling Local Seabreeze Flow and Associated 
Dispersion Patterns over a Coastal Area in North-East Spain: a case study. Boundary-Layer Meteorology, 140, 37-56. 
16 Jiménez, P.A., González-Rouco, J. F., García-Bustamante, E., Navarro, J., Montávez, J.P., Vilà-Guerau de Arellano, J., 
Dudhia, J. and Roldán, A., 2010. Surface wind regionalization over complex terrain: Evaluation and analysis of a high-
resolution WRF numerical simulation. Journal of Applied Meteorology and Climatology, 49, 268-287 
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Statistical showed in the previous table are complemented with the Directional Accuracy (DACC) 

statistic17 18. This statistic is a parameter that quantifies the percentage of occasions that the 

atmospheric model uncertainty for this variable is less than 30º (Eq. 1) being Di the difference 

between modelled and observed values. 

𝐷𝐴𝐶𝐶 =
100

𝑁
∑ {

1    𝑠𝑖 0° ≤ 𝐷𝑖 ≤ 30°
0 𝑖𝑛 𝑜𝑡ℎ𝑒𝑟 𝑐𝑎𝑠𝑒

𝑁
𝑖=1        (1) 

For the model complete evaluation also has been defined parallel statistics for the rest of 

variables: Temperature Accuracy (TACC, Eq. 2), Wind Speed Accuracy (WACC, Eq. 3) and Relative 

Humidity Accuracy (RHACC, Eq. 4). Values obtained for these statistics have been considered by 

the authors as the numerical representation of the accuracy, confidence level or reliability of 

the meteorological modeling system. 

 

𝑇𝐴𝐶𝐶 =
100

𝑁
∑ {

1    𝑠𝑖 0° ≤ 𝐷𝑖 ≤ 2𝐾
0  𝑖𝑛 𝑜𝑡ℎ𝑒𝑟 𝑐𝑎𝑠𝑒

𝑁
𝑖=1         (2) 

𝑊𝐴𝐶𝐶 =
100

𝑁
∑ {

1    𝑠𝑖 0° ≤ 𝐷𝑖 ≤ 2𝑚𝑠−1

0  𝑖𝑛 𝑜𝑡ℎ𝑒𝑟 𝑐𝑎𝑠𝑒
𝑁
𝑖=1       (3) 

𝐻𝑅𝐴𝐶𝐶 =
100

𝑁
∑ {

1    𝑠𝑖 0° ≤ 𝐷𝑖 ≤ 20%
0  𝑖𝑛 𝑜𝑡ℎ𝑒𝑟 𝑐𝑎𝑠𝑒

𝑁
𝑖=1       (4) 

And finally, to evaluate the accuracy of the precipitation, we have used a categorical evaluation 

based on the use of the statistics POD, CSI, FAR and SR. The definition of these statistics is 

showed in the next lines. 

𝑃𝑂𝐷 =
𝐴

𝐴 + 𝐶
 

Probability of Detection. Gives the rate of we—predicted locations among the 

locations where the reference is over the threshold; a perfect forecast has 

POD=1. 

𝐶𝑆𝐼 =
1

1
(1 − 𝐹𝐴𝑅)

+
1

𝑃𝑂𝐷
− 1

 
Critic Successful Index. Indicates how well exceedances of a threshold were 

predicted considering false alarms and exceedances not forecasted. A perfect 

forecast has a CSI=1. 

𝐹𝐴𝑅 =
𝐵

𝐴 + 𝐵
 

False Alarm Rate. Gives the rate of ill-predicted locations among the locations 

where the forecast is over the threshold; a perfect forecast has FAR=0. 

𝑆𝑅 = 1 − 𝐹𝐴𝑅 

Successful Rate. Corresponds to the complementary value of FAR. A value of 

100% means that false alarms are not reproduced. A perfect forecast has 

SR=1. 

 

Where A, B and C are parameters in relation with a comparison between if the 

observed/modelled value exceed or not exceed a threshold value.  The threshold value 

                                                           
17 Santos-Alamillo, F.J., Pozo-Vázquez, D., Ruiz-Arias, J.A., Lara-Fanego, V. and Tovar-Pescador, J., 2013. Analysis of 
WRF Model Wind Estimate Sensitivity to Physics Parameterization Choice and Terrain Representation in Andalusia 
(Southern-Spain). Journal of Applied Meteorology and Climatology, 52, 1592-1608. 
18 Santos-Alamillo, F.J., Pozo-Vázquez, D., Ruiz-Arias, J.A. and Tovar-Pescador, J., 2015. Influence of land-use 
misrepresentation on the accuracy of WRF wind estimates: Evaluation of GLCC and CORINE land-use maps in southern 
Spain. Atmospheric Research, 157, 17-28. 
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corresponds to 0.2 mm/3h. In the next table is showed the description of A, B and C values. This 

table is known as contingency table. 

Table 5. Contingency table defining the parameters A, B, C and D used to calculate POD, CSI, 
FAR and SR statistics. 

Forecasted 
Observed 

Yes No 

Yes 
A 

(successfully) 
B 

(false alarms) 

No 
C 

(exceedances not forecasted) 

D 
(exceedances not forecasted and not 

occurred) 
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3.2 Ensemble forecasting 

Weather forecasts are inherently uncertain because the initial state of the atmosphere can 

never be known perfectly, and the model equations must be expressed through approximations 

and simplification in the model system. Moreover, even the smallest uncertainties in the initial 

conditions of the forecast model tend to rapidly increase over time because of the chaotic nature 

of the atmosphere. Therefore, rather than integrating a single forecast from a supposedly best 

guess of the initial state (as was done in short-term forecasting), it has been shown that a better 

approach would be to start the forecast from several slightly different initial conditions, e.g. 20, 

and then derive as many, presumably somewhat different, outcomes from these differing initial 

conditions.19 This approach is called ensemble forecasting and as outcome, produces forecasts 

that are given as probability distribution. From these distributions it is possible to calculate local 

probabilities for different weather events b using thresholds (Figure 7). This information about 

forecast uncertainty is relevant to provide to all forecast users, i.e. provide weather forecasts un 

probabilistic terms. Especially when forecasting rare and high-impact weather events. 

 

 

Figure 7. The principle of ensemble-based probabilistic forecasting. 

 

 

 

 

                                                           
19 https://www.ecmwf.int/en/about/media-centre/fact-sheet-ensemble-weather-forecasting 

https://www.ecmwf.int/en/about/media-centre/fact-sheet-ensemble-weather-forecasting
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3.2.1 GEFS 

The National Centers for Environmental Prediction (NCEP) is the leading center that produces 

global forecasts. The Global Ensemble Forecast System (GEFS) forecast ensemble Is based upon 

the notion that erroneous forecasts result from a combination of initial analysis errors and 

model deficiencies, the former dominating during the first five days or so. Analysis errors amplify 

mostly in the sensitive parts of the atmosphere where strong low-pressure areas develop. These 

errors then move downstream and amplify and thereby affect the large-scale flow. To estimate 

the effect of possible initial analysis errors and the consequent uncertainty of the forecasts, 

small changes to the analysis are made creating an ensemble of many different “perturbed” 

initial states. In order to save computational time, the ensemble members are run at a lower 

(~40 kilometres) spatial resolution. 

The GEFS consists of 21 individual ensemble members that are created for lead times of up to 

16 days (384 hours) four times a day. However, within the VISCA proposes, GEFS products are 

considered up to 10 days forecast. The temporal resolution of the ensemble forecasts is 3 hours 

for lead times up to 192 hours, and 6 hours for lead times from 198 to 384 hours. The first 

member of the GEFS is called the control forecast (CNTL). It utilizes the same current condition 

and description of model physics but at a coarser spatial resolution. Its significance for the 

ensemble is that it provides the unperturbed member to which the perturbations for the 

remainder of the ensemble members are applied. The 21 perturbed members are similar to the 

CNTL but their initial states and model physics have been perturbed to explore the currently 

understood range of uncertainty in the observations and the model. They provide a range of 

possible future weather states. When averaged over many forecasts (although not necessarily 

for any particular forecast), these have lower skill than either the HRES or the CNTL.  However, 

they do provide an estimate of the forecast uncertainty or confidence. More importantly, the 

ensemble provides information from which the probability of alternative developments is 

calculated, in particular those related to risk of extreme or high-impact weather. The weather 

parameters that are used from the GEFS data output stream are shown in Table 6. 

Table 6. Parameter details of the GEFS forecasts. 

Short 
name 

Long name Unit Temporal  
resolution 

Lead  
times 

t2m 2 metre temperature K 3 h 0…240 h 

tmax 2 metre maximum temperature K 3 h 0…240 h 

tmin 2 metre minimum temperature K 3 h 0…240 h 

rh2 2 metre relative humidity % 3 h 0…240 h 

wspd 10 metre wind speed m/s 3 h 0…240 h 

swrad Downward short-wave flux at ground surface W/m2 3 h 0…240 h 
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4. Weather forecast products 

In the VISCA project, two kinds of products are delivered as explained in previous sections; short-

term weather forecasts and mid-term weather forecast. While having in two days in advance 

the weather forecast product is useful for near future in-field activities, having weather forecast 

information ten days in advance could be useful to wine producers to minimize risks related to 

coming extreme events. For instance, if a heat wave is forecasted in 6 days, wine producers 

could act in advance irrigating the field more than usual before the event.  

Weather forecast data is distributed in the GRIB file format which is used by the operational 

meteorological centres for storage and the exchange of gridded fields. Meteosim will convert 

the processed forecasts products to the GeoJSON format for upload to the VISCA system. 

Ensemble forecasts for each demo-site will be computed from GEFS data and converted to the 

TXT file format for the computation of the irrigation products. 

4.1 Short-term 

Meteosim provides deterministic forecast for the variables identified in Table 7. The 

deterministic forecasts are calculated by using WRF-ARW output data. 

Table 7. The deterministic weather forecast variables provided to VISCA. 

Variable (unit) 

Temperature (℃) 

Wind speed (m/s) 

Accumulated precipitation (mm/h) 

Relative humidity (%) 

Downward short-wave flux (W/m2) 

 

Figure 8 to Figure 12 below show examples of the deterministic weather forecasts obtained with 

WRF-ARW model. In these examples, the forecast valid time is the 27th of March 2018, 15:00 

UTC.  The figures are presented in GeoJSON format as example sent to the VDI.  
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Figure 8. Deterministic forecast for the accumulated precipitation (mm/h). Figure 9. Deterministic forecast for the temperature (°C). 
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Figure 10. Deterministic forecast for the relative humidity (%). Figure 11. Deterministic forecast for the wind speed (m/s). 
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Figure 12. Deterministic forecast for the downward short-wave flux (W/m2) 
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4.2 Mid-term 

Meteosim also provides probabilistic forecast for some of the variables identified in Table 9. The 

probabilistic forecasts are computed by using GEFS data. While grid output forecast data will be 

computed, also point-series output forecast are going to be extracted from the grid for each 

demo-site. 

4.2.1 Grid forecast 

A European grid with the probabilistic weather forecast is going to be delivered to the VDI. In 

this way, for the above variables, a set of bins were defined (Table 8). GeoJSON files contain for 

each lead time forecast and meteorological field the probability of members within each bin. 

From Figure 13 to Figure 17 examples about mid-term forecast product are shown. Table 8 

shows the variables computed and the associated bins considered to calculate the probabilistic 

forecast. 

Table 8. Bins for each meteorological field. 

Variable (unit) Bins 

Mean temperature (℃) -10 – 40 in ℃ 

Maximum temperature (℃) 0 – 50 in ℃ 

Minimum temperature (℃) -20 – 30 in ℃ 

Wind speed (m/s) 0, 0 – 2, >2 in m/s 

Accumulated precipitation (mm/h) 0, 0 – 10, >10 in mm/day 

Relative humidity (%) 0 – 30, 30 – 60, 60 – 90, 90 – 100 in % 

4.2.2 Point-series forecast 

Point-series forecast for each demo-site are also being extracted from the GEFS data. This data 

is going to be used by IRTA in order to run the irrigation model. To do that, a TXT files are going 

to be computed and delivered to the VDI. The meteorological fields considered are the ones 

showed in Table 9. Moreover, Table 10 shows an example of a file where weather forecast data 

for each ensemble member (MEMBER), valid forecasting date (valid_date), mean temperature 

(T2M), relative humidity (RH2M), wind speed (WSPD10M), precipitation (PREC), downward 

short-wave flux (DSWRF), longitude, (LON), latitude (LAT) and the end-user (COMPANY). In the 

below example some rows are shown for the demo-site of Codorniu. By the way, the weather 

forecast data were also extracted for demo-sites of Symington and Mastroberardino. 
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Table 9. The probabilistic weather forecast variables provided to VISCA. 

Variable (unit) 

Mean temperature (℃) 

Wind speed (m/s) 

Accumulated precipitation (mm/h) 

Relative humidity (%) 

Downward short-wave flux (W/m2) 

 

Table 10. Mid-term forecast example TXT file. 

MEMBER valid_date T2M RH2M WSPD10M PREC DSWRF LON LAT COMPANY

1 2018032700 6.2 66 4.1 0.0 0 0.50742 416.625 Codorniu

1 2018032703 4.8 74 4.0 0.0 0 0.50742 416.625 Codorniu

1 2018032706 4.8 80 4.4 0.0 0 0.50742 416.625 Codorniu

1 2018032709 11.9 63 8.2 0.0 260 0.50742 416.625 Codorniu

1 2018032712 18.7 50 10.7 0.0 480 0.50742 416.625 Codorniu

1 2018032715 20.7 46 12.3 0.0 710 0.50742 416.625 Codorniu

1 2018032718 17.1 56 10.7 0.0 493 0.50742 416.625 Codorniu

1 2018032721 13.4 69 7.9 0.0 0 0.50742 416.625 Codorniu

1 2018032800 11.0 78 5.4 0.0 0 0.50742 416.625 Codorniu

1 2018032803 9.4 84 4.0 0.0 0 0.50742 416.625 Codorniu

1 2018032806 8.0 85 2.7 0.0 0 0.50742 416.625 Codorniu

1 2018032809 15.2 55 4.3 0.0 270 0.50742 416.625 Codorniu

1 2018032812 20.9 37 5.9 0.0 498 0.50742 416.625 Codorniu

1 2018032815 22.8 25 6.5 0.0 740 0.50742 416.625 Codorniu

1 2018032818 18.4 34 3.3 0.0 518 0.50742 416.625 Codorniu

1 2018032821 13.9 39 3.2 0.0 0 0.50742 416.625 Codorniu

1 2018032900 11.9 45 3.0 0.0 1 0.50742 416.625 Codorniu

1 2018032903 10.6 56 3.4 0.0 0 0.50742 416.625 Codorniu

1 2018032906 9.4 76 4.5 0.0 0 0.50742 416.625 Codorniu
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Figure 13. Probabilistic forecast for the accumulated precipitation (mm/h). 
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Figure 14. Probabilistic forecast for the wind speed (m/s). Figure 15. Probabilistic forecast for the relative humidity (%). 
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Figure 16. Probabilistic forecast for the maximum temperature (°C). Figure 17. Probabilistic forecast for the minimum temperature (°C) 
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4.1 Conclusions 

In this report, the process of weather forecast development and production from input to output 

data was described. 

As was shown in section 3.1.3, some experiments were defined to improve deterministic 

forecast. The experiments are being carried out, so the sensitivity analysis results will be shown 

when the calibration and validation will finish for the three demo-areas. The calibration should 

improve the overall short-term forecast that is already running without the best model 

configuration; experiments are still running. The existing of ensemble members allow us to 

compute probabilistic forecast that can be useful to obtain the uncertainty of the model.  

The purpose of these developed weather forecast products is to provide information of the 

weather conditions, so that necessary preparedness and mitigation actions can be made by wine 

producers. 


